LONGITUDINAL WAVES AND SOUND

08 APRIL 2014

Lesson Description

In this lesson we:

- Define longitudinal pulses and waves
- · Revise the properties of sound
- Solve problems relating to sound waves

Summary

Transverse Pulses

PhET Simulation

http://phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string en.html

A **medium** is the substance or material through which a pulse or a wave moves.

A **pulse** is a single disturbance which moves through a medium.

A **transverse** pulse is formed in a medium when all the particles disturbed by the pulse move perpendicular (at a right angle) to the direction in which the pulse is moving.

A longitudinal pulse is formed in a medium when all the particles disturbed by the pulse move parallel to the direction in which the pulse is moving.

The **amplitude** of a pulse is a measurement of how far the medium is displaced momentarily from a position of rest.

A **compression** is a region in a longitudinal wave where the particles are closest together.

A rarefaction is a region in a longitudinal wave where the particles are furthest apart.

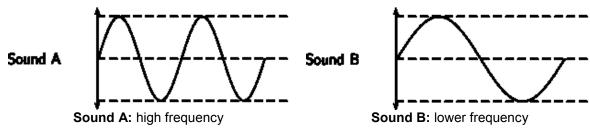
www.compressions

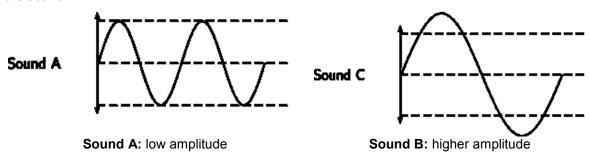
rarefactions

The **wavelength** in a longitudinal wave is the distance between two consecutive points that are in phase. i.e. between two consecutive compressions or between two consecutive rarefactions.

Sound

When a source of the sound vibrates it creates regions of high pressure and regions of low pressure.


- Speed of sound waves depends on the medium.
 - Solids: particles are closer together therefore sound waves move fastest in solids.
 - Temperature:
 Higher temperature particles move faster, higher kinetic energy therefore sound waves move faster.
 - Air pressure: Higher air pressure– therefore waves move faster found at sea level where air is denser.



Pitch of sound relates to the **frequency** of the sound wave. e.g middle "C" is 256 Hz. The higher the pitch the higher the frequency.

The human ear can detect a wide range of frequencies. Frequencies from 20 to 20 000 Hz are audible to the human ear. Any sound with a frequency below 20 Hz is known as an infrasound and any sound with a frequency above 20 000 Hz is known as an ultrasound.

Loudness of sound relates to the **amplitude** of the sound wave. The higher the amplitude the louder the sound.

Test Yourself

Question 1

The unit Hertz is equivalent to...

A s⁻¹

B s

C m⁻¹.s

D $m.s^{-1}$

Question 2

The speed of a wave is found by

A wavelength ÷ frequency

B frequency ÷ wavelength

C wavelength x frequency

D wavelength x period

Question 3

The sound that has the highest pitch has ...

- A a frequency of 500Hz and an amplitude of 50 dB
- B a frequency of 450Hz and an amplitude of 75 dB
- C a frequency of 400Hz and an amplitude of 100dB
- D a frequency of 300Hz and an amplitude of 120dB

Question 4

The sound that is the loudest is ...

- A a frequency of 500Hz and an amplitude of 50 dB
- B a frequency of 450Hz and an amplitude of 75 dB
- C a frequency of 400Hz and an amplitude of 100dB
- D a frequency of 300Hz and an amplitude of 120dB

Question 5

An echo is evidence that sound waves can

- A interfere with each other
- B undergo diffraction
- C be reflected
- D be refracted

Question 6

Select one of the words or phrases listed below that matches the following descriptions:

wave frequency	pulse interference	wavelength medium	reflection	
			period	amplitude

- a. A single disturbance in a medium
- b. The distance of one complete wave measured between any two adjacent points in phase.
- c. The maximum disturbance of the medium from rest.
- d. The time taken for one complete wave to pass a point.
- e. The combination of sound from two sources that produces a louder sound

Improve your Skills

Question 1

A guitar string produces a musical note, E, that travels through air at a speed of 330 m.s⁻¹. The frequency of the note is 329,6 Hz. Calculate:

- a. The period of the note.
- b. The wavelength of the note.

A different string on the guitar also a note with a frequency of 82,41Hz

c. What can you deduce about these two notes?

Question 2

A teacher uses a signal generator to produce sound waves which have a frequency of 10Hz and a wavelength of 40m in air. The signal generator is attached to an oscilloscope. A wave pattern is displayed on the screen with an amplitude of 2cm. The oscilloscope shows is adjusted to show 2,5s.

- a. Draw a sketch graph showing what you would see on the screen.
- b. On the same set of axes, draw a graph showing a wave that has double the amplitude and half the frequency
- c. Calculate the speed of the sound wave
- d. Predict what will happen to the speed of sound when
 - i. the sound moves from air into a steel bar
 - ii air that is 5⁰ cooler

