notes for ...

ELECTROMAGNETIC RADIATION

15 APRIL 2014

Lesson Description

In this lesson we:

- Define electromagnetic radiation.
- Identify uses for various ranges of EM radiation.
- Solve for frequency and wavelength using the wave equation.
- Calculate the energy of a photon.

Summary

Electromagnetic Spectrum

Visible light – only a part of a whole range of radiation that our eyes cannot detect.

Made up of changing electric and magnetic fields interacting.

Picture taken from: www.everythingscience.co.za

Properties:

Travel at a constant **speed** of 300 000 000 m.s⁻¹ or **3 x 10** 8 m.s⁻¹ in a vacuum.

No medium is required for EM radiation to pass through.

Wave particle duality – behaves like a wave and a particle.

notes for ...

Picture taken from: www.everythingscience.co.za

Test Yourself

Question 1

Provide the correct SI unit for each of the following:

- a.) frequency
- b.) wavelength
- c.) energy
- d.) period

Question 2

The symbol h stands for:

- A. speed
- B. energy
- C. Huygen's Principle
- D. Planck's constant

Question 3

A radio wave has high...

- A. frequency
- B. energy
- C. wavelength
- D. amplitude

notes for ...

Question 4

UV radiation is used in:

- A. TV broadcasts
- B. cell phone technology
- C. detecting broken bones
- D. sun beds

Improve your Skills

Question 1

Two forms of radiation are given:

- A. EM radiation with a frequency of 0.5 THz
- B. EM radiation with a wavelength of 890 μm
 - a.) Calculate the energy of a photon of each form EM radiation.
 - b.) Compare the forms of radiation in terms of which has the longer wavelength?

Question 2

X-rays are part of the electromagnetic spectrum. It is given that the wavelength of certain X-rays are 2.3 nm.

- a.) Calculate the frequency of the X-rays.
- b.) Determine the energy of a photon of this X-ray radiation.
- c.) Suggest a medical use of X-rays.
- d.) Discuss the penetrating ability of X-rays.
- e.) What precautions would medical personal operating X-ray machines need to take?

Links

www.everythingscience.co.za

