

MATHEMATICS grade 11

TRIGONOMETRY: REDUCTION FORMULAE

12 MAY 2014

Lesson Description

In this lesson we:

1 Work with the Reduction Formulae for the Trig Ratios of the following angles:

notes for

- 180° A
- 180° + A
- 360° A
- 360° + A
- 90° A
- 90° + A
- –A

Simplify numerical and algebraic trigonometric expressions

2

Summary

Definitions of the Ratios

Ratio	On a system of axes	In a right-angled triangle
sin θ	$\frac{v}{r}$	$\frac{\text{opposite}}{\text{hypotenuse}} = \frac{o}{h}$
cosθ	$\frac{x}{r}$	$\frac{\text{adjacent}}{\text{hypotenuse}} = \frac{a}{h}$
tan θ	$\frac{v}{x}$	$\frac{\text{opposite}}{\text{adjacent}} = \frac{o}{a}$

Signs of the ratios in the Four Quadrants

Identities

 $\tan \theta = \frac{\sin \theta}{\cos \theta}$ $\sin^2 \theta + \cos^2 \theta = 1$ Stemming from the identity $\sin^2 \theta + \cos^2 \theta = 1$, we also get the following two: $\sin^2 \theta = 1 - \cos^2 \theta$ $\cos^2 \theta = 1 - \sin^2 \theta$

Reduction formulae $180^{\circ} \pm \theta$, $360^{\circ} - \theta$, $90^{\circ} \pm \theta$

- 180° and 360° lie on the x-axis. If one works of the x-axis with angles such as $180^{\circ} \theta$, 180° • + θ , 360° – θ or – θ , the ratio is unchanged.
- When reducing ratios of angles $(90 \pm \theta)$, the ratios change to the Co-functions.

Test Yourself

Question 1

sin (*A* − 180°) $\frac{1}{\cos(A+180^\circ) \cdot \tan(-A)} = \cdots$

- A. $-tan^2A$
- B. 1 C. tan^2A
- D. 1

Question 2

If $tanx = a^{-1}$ with a > 0 and $x \in [0^\circ; 360^\circ]^\circ$, then $sinx = \cdots$

A.
$$\frac{1}{\sqrt{1+a^2}}$$

B. $\frac{-1}{1+a}$ or $\frac{1}{1+a^2}$
C. $\frac{1}{\sqrt{1+a^2}}$ or $\frac{-1}{\sqrt{1+a^2}}$
D. $1+a^2$

Question 3

If $cosx = \frac{-\sqrt{3}}{2}$ and $0^{\circ} < x < 180^{\circ}$, determine the value of *sinx*.

A.
$$\frac{-2}{\sqrt{3}}$$

B. $\frac{1}{2}$
C. $-\frac{\sqrt{3}}{2}$
D. $-\frac{1}{2}$

Question 4

 $\tan(180^\circ - x) \cdot \tan(180^\circ + x) = \cdots$

- A. -2tanx
- B. $-tan^2x$
- C. tan2x
- D. tan^2x

Question 5

 $cos225^{\circ} + 1 = \cdots$

A.
$$\frac{-2-\sqrt{2}}{2}$$

B. $\frac{\sqrt{2}-2}{2}$
C $\frac{2+\sqrt{2}}{2}$

D.
$$\frac{2}{2}$$

notes for

Question 6

sin240° $\frac{1}{sin120^{\circ}} = \cdots$ A. 1 B. $\frac{1}{2}$

- C. -1
- D. $-\frac{1}{2}$

Question 7

The function y = tanbx is undefined for $x = \mp 30^{\circ}$ and $x = \mp 90$, $x = [-90^{\circ}; 90^{\circ}]$. What is the value of b?

- A. 1
- B. $\frac{1}{2}$ C. 3
- D. 2

Question 8

$$\frac{\cos (180^\circ - A)}{\sin (90^\circ - A)} = \cdots$$

$$A. -1$$

$$B. -tanA$$

$$C. 1$$

$$D. \frac{1}{-tanA}$$

Question 9

The sign of sinA is the same as the sign of cosA, but opposite to the sign of tanA. Which statement is true?

- A. $0^{\circ} < A < 90^{\circ}$
- B. $90^{\circ} < A < 180^{\circ}$
- C. $180^{\circ} < A < 270^{\circ}$
- D. $270^{\circ} < A < 360^{\circ}$

Improve your Skills

Question 1

If $\cos 65^\circ = m$, and $\cos \theta = m$, give FIVE possible values for θ 1.1

P is the point (-1;b) and $\hat{XOP} = 210^{\circ}$ 1.2

- a.) Use a diagram to calculate the value of b.
- b.) If Q is another point on the terminal ray OP, write down the possible coordinates of Q.

Question 2

If $\sin 16^\circ = K$, write each of the following in terms of K:

- a.) sin196°
- b.) $\cos 74^{\circ}$

P

- c.) $\sin(-344^{\circ})$
- d.) $(1 \cos^2 164^\circ)$

learn more, learn stral

MATHEMATICS grade 11

2

notes for

Question 3

3.2

3.1
$$\frac{1}{4\tan^2(-30^\circ)} + \frac{3}{2}\cos 240^\circ - 2\sin 1395^\circ$$

$$\frac{\cos(90^\circ - x).\cos(1080^\circ + x)}{\cos(180^\circ - x).\cos(-x)\left[\tan(180^\circ + x) - \frac{1}{\tan(360^\circ - x)}\right]}$$

2