

SOLVING TRIG EQUATIONS

26 MAY 2014

Lesson Description

In this lesson we:

- Define the concept "general solution" which is used when solving trig equations
- Solve simple trig equations

Summary

If $sin\theta = m$, then the general solution is

$$\theta = (calc \ angle) + k360^{\circ} \ or \ \theta = 180^{\circ} - (calc \ angle) + k360^{\circ}, \ k \in \mathbb{Z}$$

If $cos\theta = m$, then the general solution is

$$\theta = (calc \ angle) + k360^{\circ} \ or \ \theta = -(calc \ angle) + k360^{\circ}, \ k \in \mathbb{Z}$$

If $tan\theta = m$, then the general solution is

$$\theta = (calc \ angle) + k180^{\circ}, \qquad k \in \mathbb{Z}$$

Test Yourself

Question 1

If $sin(-A) = tan335,3^{\circ}$ for $A \in [-180^{\circ}; 180^{\circ}]$; the size of A is:

A.
$$-27.4^{\circ} \text{ or } 152.6^{\circ}$$

C.
$$27.4^{\circ} \text{ or } -152.6^{\circ}$$

D.
$$-27.4^{\circ} or - 152.6^{\circ}$$

Question 2

If $tanx = a^{-1}$ with a > 0 and $x \in [0^{\circ}; 360^{\circ}]^{\circ}$, then $sinx = \cdots$

A.
$$\frac{1}{\sqrt{1+a^2}}$$

B.
$$\frac{-1}{1+a}$$
 or $\frac{1}{1+a^2}$

C.
$$\frac{1}{\sqrt{1+a^2}}$$
 or $\frac{-1}{\sqrt{1+a^2}}$

D.
$$1 + a^2$$

Question 3

Determine the value of $13\cos 2\theta$ if $\tan \theta = \frac{3}{2}$

- A. -5
- B. 12
- C. -6
- D. 5

Question 4

If $cosx = \frac{-\sqrt{3}}{2}$ and $0^{\circ} < x < 180^{\circ}$, determine the value of sinx.

- A. $\frac{-}{\sqrt{2}}$
- В.
- C. $-\frac{\sqrt{3}}{2}$
- D. $-\frac{1}{2}$

Question 5

Determine the general solution if $tan(180^{\circ} - x) \cdot tan(180^{\circ} + x) = -1$

- A. $45^{\circ} + k180^{\circ}, k \in \mathbb{Z}$
- B. $-45^{\circ} + k180^{\circ}, k \in \mathbb{Z}$
- C. $\mp 45^{\circ} + k180^{\circ}, k \in \mathbb{Z}$
- D. $135^{\circ} + k180^{\circ}, k \in \mathbb{Z}$

Question 6

If $2\cos(\alpha + 40^{\circ}) = -0.639$, determine the value of α if $\alpha \in [-360^{\circ}; 0^{\circ}]$

- A. -108,6° or -251,4
- B. $-148,6^{\circ} \text{ or } -211,4^{\circ}$
- C. $-68,6^{\circ} \text{ or } -248,6^{\circ}$
- D. $-251,4^{\circ} \text{ or } -288,6^{\circ}$

Question 7

The sign of sinA is the same as the sign of cosA, but opposite to the sign of tanA. Which statement is true?

- A. $0^{\circ} < A < 90^{\circ}$
- B. $90^{\circ} < A < 180^{\circ}$
- C. $180^{\circ} < A < 270^{\circ}$
- D. $270^{\circ} < A < 360^{\circ}$

Improve your Skills

Question 1

Determine the general solution, correct to 1 decimal place.

1.1
$$\cos \theta = -0.102$$

$$1.2 \qquad \frac{\cos \theta}{2} = -0.102$$

Question 2

Determine the general solution, correct to 1 decimal place.

2.1
$$\sqrt{3} \sin A = 0.785$$

2.2
$$\sqrt{3} \sin A = -0.785$$

Question 3

Determine the general solution, correct to 1 decimal place.

3.1
$$\tan \beta + 5 = 15,275$$

3.2
$$\tan(\beta + 50^{\circ}) = -15,275$$

